If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2-8t+350=0
a = -4.9; b = -8; c = +350;
Δ = b2-4ac
Δ = -82-4·(-4.9)·350
Δ = 6924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6924}=\sqrt{4*1731}=\sqrt{4}*\sqrt{1731}=2\sqrt{1731}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{1731}}{2*-4.9}=\frac{8-2\sqrt{1731}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{1731}}{2*-4.9}=\frac{8+2\sqrt{1731}}{-9.8} $
| 33c+60=21c | | a=15=4a | | 343=(49x)^3/2 | | 4.5p=60.3 | | D. 6n+7−2n−14=4n+8 | | 4(3-2x)-5=7 | | 7(x=1)+2=5x+15 | | (x-300)/(1110-999)=-1.4 | | 5x=2x+15 | | 0.3+x=-21 | | 5(2x-9)-4x=3 | | -0.1x+x=999 | | X^2-35x+68=0 | | 7x-37=5x+13=180 | | 13+2k=3k+4(k-3( | | (8y+4)+90=180 | | 6(2-7y)=-30 | | n2=-18+9n | | 30-10x-x2=0 | | 10m+5=45 | | 36^(-3x+3)=((1)/(216))^(x+1) | | x/2+7=1 | | 1-1(2n+9)=4(n-2) | | 1-1(2n+9=4(n-2) | | 9.99+0.25x=43 | | 12x-8=10x+2= | | 8-9h=-1-6h | | 7t—18=-16 | | 9.99+0.25x=43.79 | | 4x+-3=38 | | -8t+2=-8t-2 | | -8t+2=-8t−2 |